Se oggi utilizzo le mie conoscenze per aiutare gli altri, loro faranno lo stesso con me quando ne avrò bisogno.

Problema - Quadrato e Rettangolo

Un quadrato ha il perimetro uguale a quello di un rettangolo la cui area è di 2496 cm^2 e la cui altezza misura 32 cm. Calcolare l'area del quadrato.

#geometria, #rettangolo, #quadrato,

Scriviamo i dati del problema facendo riferimento alle seguenti figure:

 

QuadratoRettangolo

 

  1. \(P_{quadrato} = P_{rettangolo} \) - i perimetri sono uguali;
  2. \(A_{rettangolo} = 2496\text{ cm}^{2} \);
  3. \( \overline{FG} = 32\text{ cm}\).

 

CALCOLO BASE DEL RETTANGOLO \(\overline{EF}\)

Per il dato (2) possiamo scrivere:

\(A_{rettangolo} = \overline{EF}\cdot\overline{FG} = 2496\text{ cm}^{2} \)

Utilizzando le formule inverse per il rettangolo, si ha che:

\(\overline{EF}=\dfrac{A_{rettangolo}}{\overline{FG}} =\dfrac{2496\text{ cm}^{2}}{32\text{ cm}} = 78\text{ cm};;\)

 

CALCOLO PERIMETRO DEL RETTANGOLO

Siccome in un rettangolo i lati opposti sono uguali, possiamo calcolare il suo perimetro:

\(P_{rettangolo}=2\cdot\overline{EF}+2\cdot\overline{FG}=2\cdot78\text{ cm}+2\cdot32\text{ cm}=220\text{ cm};\)

 

CALCOLO AREA DEL QUADRATO

Per il dato (1) del problema sappiamo che

\(P_{ABCD} = P_{EFGH} = 220\text{ cm};\)

I lati del quadrato sono tutti uguali, quindi:

\(\overline{AB}= \overline{BC}=\overline{CD}=\overline{AD}=\dfrac{P_{ABCD}}{4}=\dfrac{220\text{ cm}}{4}=55\text{ cm}.\)

A questo punto possiamo calcolare l'area del quadrato:

\(A_{quadrato}=\overline{AB}\cdot\overline{BC}=55\text{ cm}\cdot55\text{ cm}=3025\text{ cm}^{2}.\)

Leggi anche: